

COORDINATED HIGHWAYS ACTION RESPONSE TEAM
STATE HIGHWAY ADMINISTRATION

FMS R1B2 High Level Design

Contract DBM-9713-NMS
TSR # 9803444

Document # M303-DS-002R0

June 9, 2000
By

Computer Sciences Corporation and PB Farradyne Inc

R1B2 FMS High Level Design Rev.0 10/24/00 i

Revision Description Pages Affected Date
0 Initial Release All June 9, 2000

R1B2 FMS High Level Design Rev.0 10/24/00 ii

Table of Contents
1 Introduction...1-1

1.1 Purpose..1-1

1.2 Objectives..1-1

1.3 Scope..1-1

1.4 Design Process ..1-1

1.5 Design Tools ..1-2

1.6 Work Products..1-2

2 Software Architecture...2-3

2.1 Communications Servers (FMS Remote PC) ..2-3

2.2 Port Manager..2-3

2.3 Device Protocol Handlers ..2-4

2.4 CHART II Interface...2-5

2.5 High Availability ..2-5

2.5.1 Device object deployment ..2-6

2.6 Failures and Health Status ..2-7

2.7 Database Usage...2-8

2.8 ITS National Standards Approach ...2-8

2.9 R1B1 Problem Resolution ...2-8

2.10 Future Enhancements ..2-9

2.10.1 Currently Planned Enhancements...2-9

2.10.2 Other Enhancements...2-10

3 Models ...3-1

3.1 Class Diagrams ...3-1

3.1.1 FMSSubsystem (Class Diagram)..3-1

3.1.2 FMSProtocolHandlers (Class Diagram)...3-4

3.2 Sequence Diagrams ..3-6

3.2.1 Typical FMS Usage – Set DMS Message ..3-6

R1B2 FMS High Level Design Rev.0 10/24/00 iii

3.2.2 Multiple Commands on Single Connection..3-7

3.2.3 Fault Tolerance Scenario ..3-8

3.2.4 Port Leak Prevention ..3-9

4 Packaging..4-1

5 Deployment ...5-1

Bibliography..1

Acronyms ..1

Glossary ..1

Appendix A: CORBA Information ..1

CORBA .. 1

CORBA Services ... 1

CORBA Event Service.. 1

CORBA Trading Service .. 1

Table of Figures
Figure 1. FMS R1B1 Hardware Deployment (Deployment Diagram) ..2-5

Figure 2. Deployment for Lower Bandwidth Device Objects (Deployment Diagram)2-6

Figure 3. Deployment for Higher Bandwidth Device Objects (Deployment Diagram)2-7

Figure 4. FMSSubsystem (Class Diagram)..3-1

Figure 5. FMSProtocolHandlers (Class Diagram) ...3-4

Figure 6. Typical FMS Usage – Set DMS Message (Sequence Diagram)3-6

Figure 7. Multiple Commands On Single Connection (Sequence Diagram)...............................3-7

Figure 8. Fault Tolerance Scenario (Sequence Diagram) ..3-8

Figure 9. FMSSubsystem:PortLeakPrevention (Sequence Diagram) ..3-9

Figure 10. FMSPackaging (Class Diagram) ..4-1

Figure 11. FMSDeployment (Deployment Diagram) ..5-1

R1B2 FMS High Level Design Rev.0 10/24/00 1-1

1 Introduction

1.1 Purpose
This document describes the high level design of the FMS software for Release 1, Build 2. This
design is driven by the requirements of CHART II, the user of the FMS subsystem, as stated in
document M361-RS-002R2, “CHART II System Requirements Specification”.

1.2 Objectives
The main objective of this design is to provide software developers with a framework in which to
provide detailed design and implementation of the software components that comprise the FMS
subsystem.

This design also serves to provide documentation to those outside of the software development
community to show how communications specific requirements of CHART II are being
accounted for in the software design.

1.3 Scope
This design is limited to Release 1, Build 2 of the FMS subsystem and the communication
specific requirements as stated in the aforementioned requirements document (Section 1.1).

1.4 Design Process
Object oriented analysis and design techniques were used in creating this design. As such, much
of the design is documented using diagrams that conform to the Unified Modeling Language
(UML), a de facto standard for diagramming object-oriented designs.

In addition to being object oriented, this design incorporates distributed object techniques, which
allow for great flexibility and scalability of the system. In a distributed object system, objects can
be deployed in servers throughout the network. This design addresses the partitioning of object
types into specific server applications for this release.

The design process is very iterative: each step can possibly cause changes to previous steps.
Listed below is the process that was used to create the work products contained in this document:
• = The team utilized the use case diagrams defined in the CHART II R1B2 High Level Design

and identified uses that require field communications.
• = A straw man class diagram was created with major entities evident in the use cases being

listed as possible classes in the system. High-level relationships between the classes were
discovered and documented on the class diagram.

• = Sequence diagrams were created for key uses of the system, showing how the classes on the
class diagram would be used to perform the use case. This often involved changes to the
class diagram, such as adding classes, moving responsibilities between classes, or adding
operations to a class. Sometimes the changes affected other sequence diagrams as well.

• = After the process of creating sequence diagrams and associated changes to the class diagram,
internal reviews were used to resolve remaining issues.

R1B2 FMS High Level Design Rev.0 10/24/00 1-2

• = The design was broken down into packages, grouping classes with a high amount of
dependency together.

• = Deployment diagrams were created to show various deployment options that exist with the
FMS and CHART II objects.

1.5 Design Tools
The work products contained within this design are extracted from the COOL:JEX design tool.
Within this tool, the design is contained in the Chart II project, R1B2 configuration, Analysis
phase, system version FMSHighLevel.

1.6 Work Products
This design contains the following work products:
• = UML Class diagrams, showing the high level software objects which will allow the system to

accommodate the uses of the system described in the Use Case diagrams.
• = UML Sequence diagrams showing how the classes interact to accomplish a use of the

system.
• = A UML Package diagram, showing how the classes are broken up into manageable software

packages.
• = A UML Deployment diagram, showing which servers will serve each class of objects and

where servers and GUIs will be deployed.

R1B2 FMS High Level Design Rev.0 10/24/00 2-3

2 Software Architecture
The FMS software architecture provides generic distributed communication services which are
used by device specific protocol handlers to provide access to field devices such as Dynamic
Message Signs, Highway Advisory Radio, and others. The Common Object Request Broker
Architecture (CORBA) is used as a base for the FMS architecture. Background information on
CORBA can be found in appendix B.

The sections below discuss specific elements of the architecture and software components that
comprise the FMS subsystem.

2.1 Communications Servers (FMS Remote PC)
A communication server is a PC that is outfitted with one or more pieces of communications
hardware, such as ISDN modems, POTS modems, and/or telephony boards used to communicate
with field devices. FMS software is run on a communication server to provide the management
of these communications resources to allow them to be shared among separate software
applications and also to provide remote access to these resources via a network. Because the
FMS software can be distributed, deployment options exist to allow applications that control
field devices to be highly tolerant to faults in the communications servers, their hardware, and
the communications infrastructure itself.

2.2 Port Manager
The FMS software that manages access to communications resources is a PortManager. A
PortManager is configured specifically for the hardware that it will manage. The
communications resources are modeled in software as Port objects. Specific types of port objects
exist for each type of communications resource that is supported, which currently includes ISDN
and POTS modems.

Upon startup of the FMS software, a PortManager object is created and published to the CORBA
trading service, making it available for discovery and use by other applications. The
PortManager creates port objects to represent each of the physical communications resources that
it is configured to manage. The actual type of object created depends on the type of port, for each
type of port object contains functionality specific to the resource it represents. After the port
manager is started, it accepts requests for ports by other application software that has
communications requirements.

Applications request Port objects by type and priority. When a request for a port is received, the
PortManager finds a port of the specified type that is not currently in use and returns a reference
to the port object to the requester. If all instances of a requested type of port are in use, a timeout
value supplied by the requester is used to determine how long the requester is willing to wait for
a port to become available. In the event there are two or more requesters waiting for a port to
become available, the priority is used to determine which requester gets the next available port.

Once a port is acquired, it is accessed directly by its user to perform functionality specific to the
type of port, such as connecting to a remote modem and/or sending and receiving bytes.

R1B2 FMS High Level Design Rev.0 10/24/00 2-4

After a requester has finished using a port, it releases the port back to the PortManager. The port
manager has a background process that reclaims ports as necessary if the user of a port does not
release it.

2.3 Device Protocol Handlers
Application objects known as device protocol handlers are provided as a high level interface to
the FMS subsystem for specific device control. These protocol handlers are coded to
communicate with a specific device type. Handlers for the following field devices are included in
this design. Handlers for other device types can be added as needed.

Dynamic Message Signs (DMS)

• = FP9500

• = FP2001

• = FP1001

• = TS3001

• = Sylvia

• = Display Solutions

• = Addco

Highway Advisory Radio (HAR) [Future Release]

• = Information Station Specialists (ISS) AP55

SHAZAM [Future Release]

• = Viking RC2A remote on/off controller

Each protocol handler provides methods used by application programs to perform specific
functions supported by the device targeted by the protocol handler. For example, a typical DMS
protocol handler has methods to set a message, blank the sign, reset, and poll the DMS.

Device protocol handlers do not store device status or configuration. They only provide an
encapsulation of the device protocol and act as a utility for higher-level applications that provide
device control to an end user. The protocol handlers are provided a Port object through which
they communicate with the device to fulfill a request.

R1B2 FMS High Level Design Rev.0 10/24/00 2-5

2.4 CHART II Interface
The CHART II interface to the FMS subsystem is provided through device protocol handlers.
CHART II provides application objects that model field devices and track their current
configuration and status. These CHART II device objects construct a device protocol handler
specific to the device type which the device object models and uses this protocol handler object
when field communications are needed.

2.5 High Availability
The FMS software architecture allows for high availability of communications services through
the deployment of many distributed PortManager objects. The FMS R1B1 hardware deployment
lends itself to this wide distribution.

Field DMS

HANSOCCHART2
Chart II Application Server

ISDN

ISDN

ISDN

ISDN

ISDN

LAN

Frame Relay

Frame Relay

HANSOCFMS1
Communication Server (FMS Remote)

HUT1213FMS1
Communication Server (FMS Remote)

MANY OTHER
Communiction Server (FMS Remote)

Field DMS

Field DMS

ISDN

MANY OTHER
Field DMS

Field DMS

Field DMS

Figure 1. FMS R1B1 Hardware Deployment (Deployment Diagram)

Deployment of a PortManager object onto each Communication Server provides a high degree of
redundancy in the system, for each PortManager provides the same basic service. Software that
requires a PortManager has a choice from many PortManagers distributed throughout the system.
One or many failures within the communications infrastructure (which includes full-scale
communication server failure, ISDN port failure, frame relay circuit failure, and ISDN circuit
failure) can be tolerated by the system as a whole.
Because some device communications (such as fixed DMS ISDN communications) benefit from
cost savings through the use of a specific Communications Server close to the field device, the
software that uses PortManagers can allow a preferred server to be specified, as well as one or
more alternate servers. Under normal circumstances the preferred server would be used, however
in the case where the preferred server is not available, an alternate server can be used to allow
communications to proceed. A PortLocator utility class exists in this design to provide this
functionality to users of FMS, namely CHART II device objects. This utility class provides a
framework for a future enhancement to perform automated alternate server determination.

R1B2 FMS High Level Design Rev.0 10/24/00 2-6

2.5.1 Device object deployment
Deployment options also exist with the CHART II objects that provide device control.

2.5.1.1 Lower Bandwidth CHART II Device Objects
With this deployment option, the application that uses protocol handlers is deployed on a PC
other than an FMS Communications Server. The communications resources provided by the
Communications Server are accessed remotely over a network via CORBA.

By deploying the device control software and the communications software on different physical
PCs, the device control software is more tolerant to failures such as catastrophic communication
server failures and frame relay failures.

CHART II GUI

FMS Communications Server

PortManager

ISDNModemPort

ISDNModemPort

ISDNModemPort

CHART II Server

DMS

High level calls such as
SetMessage are passed
directly to the DMS object.

CORBA calls from PortLocator
to PortManager for getPort.

CORBA calls from protocol
handler to ISDNModemPort
for send and receive.

CORBA calls from DMS to
ISDNModemPort for connect
and disconnect.

Updates to device status
are passed to GUI via
CORBA event.

CORBA

CORBA

CORBA

CHART II GUI

FP9500ProtocolHandler

EventChannel PortLocator

CORBA

Figure 2. Deployment for Lower Bandwidth Device Objects (Deployment Diagram)

2.5.1.2 Higher Bandwidth CHART II Device Objects
Some field devices require frequent communications with a large amount of data. The cost of the
network bandwidth required to control such a device using the PortManager objects in a
distributed deployment may outweigh the benefits of the high degree of availability. In this case,
one may choose to deploy the device control and protocol handler objects on the
Communications Server itself to lower the network bandwidth usage.

Under this type of deployment, certain failure conditions would allow the use of the distributed
nature of FMS to provide high availability to device control, while others would not. For
example, if the Communications Server PC should fail completely, the device control software
would become unavailable along with the PortManager object. If, however, there were a
communications hardware or telecommunications infrastructure failure at the Communications

R1B2 FMS High Level Design Rev.0 10/24/00 2-7

Server, the device control software could utilize a remote PortManager for its communications
requirements instead of its local PortManager, incurring a higher bandwidth cost only during this
time of failure.

CHART II Server

EventChannel

Commands go directly to
the device object.

Device status changes
are pushed to the
EventChannel

EventChannel pushes
the status to all registered
GUIs.

CORBA

CORBA

CHART II GUI

CORBA Calls from the device object and protocol
handler to the Port objects happen
on the same machine or even in the
same Java virtual machine.

FMS Communications Server

During times of communication
failures, the device object could access
the communications services
of another FMS Communications Server

CORBA

CHART II GUI

FMS Communications Server

PortManager

ISDNModemPort

ISDNModemPort

ISDNModemPort

Detector
ADRProtocolHandler

PortLocator

CORBA

Figure 3. Deployment for Higher Bandwidth Device Objects
(Deployment Diagram)

2.6 Failures and Health Status
Failures are conveyed back to users of PortManager, Port, and protocol handler objects through
exceptions. These exceptions contain detailed debugging information as well as information
suitable for display to a user. The error messages provide details such as reason for a connection
failure (such as busy signal) and protocol specific errors such as checksum failures, etc.

The FMS Communications Server software implements the Service interface defined by CHART
II. This interface provides basic functionality useful for monitoring remote software processes.
The implementation of this interface allows a system administrator to determine the health of the
communications server software.

In addition to the generic health check provided by the Communications Server software, the
PortManager objects provide a method that can be called to check the status of the ports that it
manages. Port objects maintain a status that includes the number of connections attempted, the
number of failed connections, and the number of input/output (IO) errors that have occurred on

R1B2 FMS High Level Design Rev.0 10/24/00 2-8

the port. An application can use this information to allow a system administrator to determine the
health of individual ports on a Communications Server.

2.7 Database Usage
The FMS Communications Server uses a database for configuration and object persistence. Each
Port object served by the PortManager has entries in a database table providing configuration
information such as a unique identifier and port name. Each Port entry also contains runtime
statistics, such as number of uses and failure information.

Because the information being persisted to the database during runtime is not mission critical,
the PortManager may periodically persist the Port objects instead of Port objects persisting
themselves upon each operation. The exact approach to persistence will be determined in the
detailed design.

Higher-level services such as the CHART II DMS service also only use the database for
persistence and can also run on an Access database. It should be noted, however, that minor code
changes would be needed to the CHART II software to make the database code portable between
Oracle and Access.

2.8 ITS National Standards Approach
The FMS subsystem is designed to be compliant with the current ITS national standards in both
the Center-to-Center and Center-to-Field requirements. The Center-to-Center requirements are
met due to the fact that the interface supplied by FMS is CORBA, which is one of two approved
methods of communication between ITS software components by the NTCIP Center-to-Center
committee.

Center-to-Field compliance is met within the device protocol handlers. This design supports the
addition of NTCIP compliant devices to the system through the addition of NTCIP device
protocol handlers. For example, when an NTCIP DMS is acquired by SHA, a DMS NTCIP
Protocol handler can be added that can be used to provide communications to any NTCIP
compliant DMS.

2.9 R1B1 Problem Resolution
This design alleviates many problems that were present in the R1B1 release of FMS due to the
elimination of the FMS Agent software layer:

• = MS Access Database –Due to the fact that this design relies on the database only for start-up
configuration information and runtime persistence of communications statistics (and not
inter-process communications), the MS Access database will be sufficient for the FMS
communications service. See the section on Database Usage above for more discussion.

• = Device configuration – Since FMS does not store device configurations, the problems that
caused a new device record to be added to FMS for configuration changes coupled with
removal of the old device configuration are absent. Many configuration activities will require
no FMS involvement.

• = Polling Interval/Coordination – The specification of a polling interval as a polling cycle
and the number of cycles is eliminated. Polling intervals will be specified in hours, minutes,

R1B2 FMS High Level Design Rev.0 10/24/00 2-9

and seconds. Polling will be done by the device objects that can coordinate polling with
commands that are originated by the user.

• = Conflict Request Error – Because device control is performed through FMS in a
synchronous manner, errors that occurred due to timeouts, mismatched and lost traps, and
overlapping requests are eliminated.

• = Error Reporting – Improved error reporting is provided through the use of exceptions that
are thrown directly back to the CHART II software when failures occur.

• = Field Deployment – This design allows a distributed deployment of code that is generic and
not tied to high-level application logic. This minimizes the need for re-deployment to the
remote FMS PCs.

2.10 Future Enhancements
This design provides a framework that is easily extensible. The current design covers basic
communication services needed for DMS control. This section shows how upcoming
enhancements fit into the architecture and also discusses future enhancements that may or may
not be needed.

2.10.1 Currently Planned Enhancements
The following enhancements are currently planned and are present in this design:
1. Telephony Port support: A new type of port object will be added to support ports on a

telephony card that allow DTMF and voice to be sent programmatically over a telephone
line. This support will enable control of HAR and SHAZAM devices via FMS.

2. HAR protocol handler: A protocol handler will be developed to support the ISS AP55
HAR. This protocol handler will make use of the services provided by a Telephony Port
object to program the HAR.

3. SHAZAM protocol handler: A protocol handler will be developed to support the Viking
RC2A on/off controller, which is used to control a SHAZAM. This protocol handler will
make use of the services provided by a Telephony Port to send DTMF to turn on or turn off
the beacons on a SHAZAM.

R1B2 FMS High Level Design Rev.0 10/24/00 2-10

2.10.2 Other Enhancements
The following enhancements lend to the maintainability of the FMS subsystem and also discuss
how support for other device types can be added:
1. Event based failure notification: The PortManager object could register with a CORBA

event channel and automatically send events when a port experiences errors. A GUI program
could receive these events and create alarms, etc. that signal administrators of a possible
problem.

2. Remote Port Configuration: Methods could be added to the PortManager to allow ports to
be added, removed, disabled and enabled. This feature could be used to disable faulty ports
until a technician fixes them or to set the configuration of the PortManager via a CHART II
workstation.

3. Support for dedicated port: Methods could be added to the PortManager to request a
specific port of a given type instead of the first available port. This would be handy in the lab
environment that uses ISDN simulators, and would also be needed for devices that
asynchronously report their status through dial-in.

4. Support for dial in devices/synchronous receive: A variation of the connect method could
be supplied in a port that allows a listener object to be passed. Applications could configure a
modem for auto answer and they would be passed data from the port asynchronously via
their listener object when a device dials in and begins sending data.

5. Additional Device Support: Support for additional devices such as detectors can be added
through the protocol handler framework included in this design.

R1B2 FMS High Level Design Rev.0 10/24/00 3-1

3 Models
The following sections provide models and diagrams that show the high level design of the FMS
R1B2 software. This section contains class diagrams to show software objects that comprise the
system and their relationships between each other. Sequence diagrams are provided to show how
objects interact to accomplish specific uses of the system.

3.1 Class Diagrams

3.1.1 FMSSubsystem (Class Diagram)

PortLocator

acquires
ports
from

*

*

CommunicationService

Service

1

1

*1
Port

ConnectFailureGetPortTimeout

DialUpPort DataPort

VoicePort

ISDNModemPort

POTSModemPort

UniquelyIdentifiable

PortManager

ChecksumFailure DeviceNAKFailure

getPort(long portType,
 long priority,
 long timeoutMillis):Port
releasePort(byte[] id):bool

Identifier m_preferredPortManagerID
java.lang.Vector m_alternatePortManagerID

ping()
getNetConnectionSite()

string reason;
string debug;

connect(string phoneNumber):void
disconnect():void send(byte[] data):long

receive(long initialTimeoutMillis,
 long interCharTimeoutMillis):byte[]

playDTMF(string dtmf):void
playHARMessage(string preDTMF,
 HARMessageClip[],
 string postDTMF):void
playVoice(string preDTMF,
 AudioDataFormat,
 AudioData,
 string postDTMF):void
playText(string preDTMF,
 string text,
 string postDTMF):void

string m_initString

string m_initString

getPort(long portType,
 long priority,
 long timeoutMillis):Port
releasePort(byte[] id):bool

Figure 4. FMSSubsystem (Class Diagram)

R1B2 FMS High Level Design Rev.0 10/24/00 3-2

3.1.1.1 ChecksumFailure (Class)

This exception is used by ProtocolHandlers when the response from a field device contains a
checksum error or when the device indicates that a packet sent to the device contains a checksum
error.

3.1.1.2 ConnectFailure (Class)

This class is an exception thrown by Port objects when an attempt to connect to a remote device
fails. This exception contains explicit failure information that is returned by the connection
device, such as a modem response, etc.

3.1.1.3 DataPort (Class)

A DataPort is a port that allows binary data to be sent and received. Ports of this type support a
receive method that allows a chunk of all available data to be received. This method prevents
callers from having to issue many receive calls to parse a device response. Instead, this receive
call returns all available data received within the timeout parameters. The caller can then parse
the data on their side. Using this mechanism, device command and response should require only
one call to send and one call to receive.

3.1.1.4 ISDNModemPort (Class)

This class is a port that provides access to an ISDN modem.

3.1.1.5 DeviceNAKFailure (Class)

This class is an exception thrown by protocol handler objects when a device responds to a
request with a NAK. This class serves as an example of the use of exceptions by protocol
handlers to provide specific failure information.

3.1.1.6 DialUpPort (Class)

A dial-up port is a port that is used to connect dial-up devices and requires a phone number to be
passed at connection time.

3.1.1.7 GetPortTimeout (Class)

This class is an exception that is thrown by a PortManager when a request to acquire a port of a
given type cannot be fulfilled within the timeout specified.

3.1.1.8 CommunicationService (Class)

This class is a high level place holder used to convey the fact that the FMS Communications
Service will implement the Service interface defined in CHART II and that this application will
serve one PortManager object.

3.1.1.9 Port (Class)

A Port is a CORBA interface that models a physical communications port. This interface is used
as a base derivation point for subclasses that define specific types of ports.

R1B2 FMS High Level Design Rev.0 10/24/00 3-3

3.1.1.10 PortManager (Class)

A PortManager is a software object that manages access to physical communications ports on a
computer. The port manager allows ports to be requested by type and priority. When the demand
for a specific type of port is greater than the supply, the PortManager queues the requests using
priority. The PortManager also allows a timeout to be specified to indicate the amount of time
the caller is willing to wait for a port to become available.

3.1.1.11 POTSModemPort (Class)

This class is a port that provides access to a POTS modem.

3.1.1.12 Service (Class)

This interface is defined in CHART II and is implemented by CHART II service executables. It
provides a common interface that allows a system monitor to periodically check the health of a
service.

3.1.1.13 UniquelyIdentifiable (Class)

This interface is implemented by classes whose instances have a unique identifier that is
guaranteed not to match the identifier of any other uniquely identifiable objects in the system.

3.1.1.14 VoicePort (Class)

This class is a port that provides access to a port on a telephony card. While this port provides
methods that may be used for low-level control, such as playing DTMF digits and playing a
wave file, it also provides high level methods that bundle DTMF with playback. These high level
methods are useful for controlling devices that require a command to be entered with DTMF and
then have voice played. Bundling the command allows the method to prepare to play the voice
prior to sending the DTMF command. This is especially useful when the voice preparation could
take several seconds, such as when text is converted to speech.

3.1.1.15 PortLocator (Class)

The PortLocator is a utility class that helps one to utilize the fault tolerance provided by the
deployment of many PortManagers. The PortLocator is initialized by specifying a preferred
PortManager and optionally one or more alternate PortManagers. When asked to acquire a port,
the PortLocator first attempts to acquire a port from the preferred PortManager and falls back to
alternate PortManager objects when faults occur. The PortLocator can also be set to determine
the fallback action (if any) if the preferred PortManager does not have any ports currently
available. For example, the PortLocator could be set to wait a maximum of x seconds for a port
and then attempt to acquire a port from an alternate PortManager.

R1B2 FMS High Level Design Rev.0 10/24/00 3-4

3.1.2 FMSProtocolHandlers (Class Diagram)

FP9500ProtocolHdlr FP2001ProtocolHdlr FP1001ProtocolHdlr

ADDCOProtocolHdlr TS3001ProtocolHdlr

SylviaProtocolHdlr

DisplaySolutionsProtocolHdlr

NTCIPDMSProtocolHdlr

DataPort

performs
communications

using

1*
DMSProtocolHdlr

HARProtocolHdlr

ISSAP55ProtocolHdlr

SHAZAMProtocolHdlr

VikingRc2aProtocolHdlr

VoicePort

perform
communications

using

1*

perform
communcations
using

11

setMessage(VoicePort, slot[]):void
stopMessage(VoicePort):void
storeClips(VoicePort,
 slot,
 HARMessageClip[]):runLength
deleteClips(VoicePort, slot[]):void
setTransmitterOff(VoicePort):void
setTransmitterOn(VoicePort):void
reset(VoicePort):void
setConfiguration(VoicePort, HARConfiguration):void

activate(VoicePort):void
deactivate(VoicePort):void

playDTMF(string dtmf):void
playHARMessage(string preDTMF,
 HARMessageClip[],
 string postDTMF):void
playVoice(string preDTMF,
 AudioDataFormat,
 AudioData,
 string postDTMF):void
playText(string preDTMF,
 string text,
 string postDTMF):void

setMessage(DataPort port,
 string MULTI,
 boolean beacons):void
blank(DataPort):void
getStatus(DataPort):DMSStatus
setConfiguration(DataPort, DMSConfiguration):void
reset(DataPort):void

performPixelTest(string results):bool

send(byte[] data):long
receive(long initialTimeoutMillis,
 long interCharTimeoutMillis):byte[]

Figure 5. FMSProtocolHandlers (Class Diagram)

3.1.2.1 ADDCOProtocolHdlr (Class)

This protocol handler implements the protocol used to command an ADDCO DMS.

3.1.2.2 DMSProtocolHdlr (Class)

This interface defines the methods that must be supported by DMS protocol handlers. Note:
some handlers support methods in addition to these standard methods.

3.1.2.3 FP1001ProtocolHdlr (Class)

This protocol handler implements the protocol used to command an FP1001 DMS.

R1B2 FMS High Level Design Rev.0 10/24/00 3-5

3.1.2.4 DisplaySolutionsProtocolHdlr (Class)

This protocol handler implements the protocol used to command a Display Solutions DMS.

3.1.2.5 FP2001ProtocolHdlr (Class)

This protocol handler implements the protocol used to command an FP2001 DMS.

3.1.2.6 FP9500ProtocolHdlr (Class)

This protocol handler implements the protocol used to command an FP9500 DMS.

3.1.2.7 SHAZAMProtocolHdlr (Class)

This interface specifies the methods that must be implemented by protocol handlers that
implement the protocol to command a SHAZAM device. The methods provide a way to enable
and disable the flashers that exist on a SHAZAM.

3.1.2.8 HARProtocolHdlr (Class)

This interface specifies the methods that must be implemented by a protocol handler used to
program a HAR. Methods are provided to allow messages to be downloaded and played on the
HAR and to allow for maintenance activities, such as toggling the transmitter on and off.

3.1.2.9 ISSAP55ProtocolHdlr (Class)

This protocol handler implements the protocol used to program an ISS AP55 HAR.

3.1.2.10 NTCIPDMSProtocolHdlr (Class)

This protocol handler implement the protocol used to command an NTCIP compliant DMS. This
class is shown to illustrate how NTCIP center to field compliance is addressed by this design.

3.1.2.11 SylviaProtocolHdlr (Class)

This protocol handler implements the protocol used to command a Sylvia DMS.

3.1.2.12 TS3001ProtocolHdlr (Class)

This protocol handler implements the protocol used to command an Telespot DMS.

3.1.2.13 VikingRc2aProtocolHdlr (Class)

This class implements a protocol handler that provides the protocol to command a Viking RC2A
on/off controller. This controller is used to turn the beacons on and off on the flashing advisory
signs known by the SHA as SHAZAMs.

R1B2 FMS High Level Design Rev.0 10/24/00 3-6

3.2 Sequence Diagrams

3.2.1 Typical FMS Usage – Set DMS Message
This sequence shows the basic object interactions that occur to perform device communications
via FMS, using the task of setting a message on a DMS as an example. The device object
initializes communications by first using the PortLocator utility to acquire a port of a specific
type. The PortLocator obtains a port from its preferred PortManager and returns it to the device
object. The device object establishes a connection via the port object and then communicates
with field device using the protocol handler.

releasePort

releasePort

getPort

getPort

ISDNModemPort

ISDNModemPort

connect

setMessage

disconnect

send

recv

PortManager ISDNModemPortFP9500ProtocolHandlerCHART II
DMS Object

PortLocator

Figure 6. Typical FMS Usage – Set DMS Message (Sequence Diagram)

R1B2 FMS High Level Design Rev.0 10/24/00 3-7

3.2.2 Multiple Commands on Single Connection
This diagram shows usage of the FMS subsystem for a high level device command that requires
sending many commands to the field device. Such is the case in resetting a DMS, which requires
commands to the DMS to blank it, reset it, and then get its status. Because of the fine grained
control given to the user of FMS, a single connection can be held open by the object that sends
multiple commands to avoid the time required to reconnect. Note that the PortManager contains
a mechanism to prevent an application from grabbing a port and attempting to hold onto it as
their own. See the section on Port Leak Prevention.

Operator
via GUI

CHART II
DMS Object PortManager

getPort

getPort

connect

blank

send

receive

reset

send

receive

getStatus

send

receive

send

receive

disconnect

releasePort

releasePort

reset

PortLocator ISDNModemPortFP9500ProtocolHandler

Figure 7. Multiple Commands On Single Connection (Sequence Diagram)

R1B2 FMS High Level Design Rev.0 10/24/00 3-8

3.2.3 Fault Tolerance Scenario
This diagram shows that the PortLocator contains the logic for fault tolerance capabilities. When
asked to get a port, the PortLocator first attempts to get a port from the preferred PortManager,
but may fall back to alternate PortManagers when a failure occurs. The user of the PortLocator
does not need to worry about this logic and performs the normal processing on whatever port is
returned by the PortLocator.

PortLocator PortManager 1 PortManager 2 ISDNModemPortCHART II
DMS Object

DMS object continues
processing as normal.

getPort

getPort

CORBA.TRANSIENT
exception

get port manager
from alternate list

getPort

ISDNModemPort

ISDNModemPort

connect

Figure 8. Fault Tolerance Scenario (Sequence Diagram)

R1B2 FMS High Level Design Rev.0 10/24/00 3-9

3.2.4 Port Leak Prevention
The PortManager allows ports to be acquired and released by its users. The PortManager has a
mechanism to reclaim ports that have not been released in a timely manner. The PortManager
periodically checks each of its ports and evaluates them for criteria that would indicate the port’s
user is finished with the port but didn’t release the port. When this occurs, the port is
disconnected from the ORB, making it unavailable for use by its current holder. The port is then
returned to the pool of free ports. The next time the port is given out, it is reconnected to the
ORB and the new object reference is passed to the requestor. The use of transient CORBA
objects allows the PortManager to ensure that only one requester ever has a valid reference to
each Port object. A holder of a reference to a port that has been reclaimed will receive a CORBA
exception if they try to use the port.

PortManager ISDNModemPort ORB

"check for ports
not released"

[*for each port]

"get stats from port
such as connection

status and last used time"

[port meets criteria for possible leak]
disconnect from ORB's object adapter

[port meets criteria for possible leak]
return port to available pool

[port meets criteria for possible leak]
[currently connected]

disconnect

Timer

Figure 9. FMSSubsystem: Port Leak Prevention (Sequence Diagram)

R1B2 FMS High Level Design Rev.0 4-1 10/24/00

4 Packaging

This diagram shows the software packages for the FMS subsystem as well as CHART II
packages that will interface with FMS. Dependencies indicate how changes to an interface will
affect other software in the system. A dependency line indicates that if the target interface is
changed, the dependent software will need to be reviewed for possible changes as well.

DataPort

VoicePort

FP1001ProtocolHandler

DisplaySolutionsProtocolHandler

FieldCommunications

DMSProtocols

HARProtocols

SHAZAMProtocols

CHART II
DMSControlModule

FieldCommunicationsUtility

ADDCOProtocolHandler

TS3001ProtocolHandler

FieldCommunicationsModule

CHART II
HARControlModule

CHART II
SHAZAMControlModule

This package contains classes
generated by the IDL compiler.
Not all classes are shown.

This package contains
implementations of the
interfaces defined in IDL
as well as code to serve
the objects. Note that
there are no dependencies
on the implementations, therefore
changes in the impls do not
affect the rest of the system.

ISDNModemPort

PortManager

Port

POTSModemPort

PortManagerImpl ISDNModemPortImpl

POTSModemPortImpl

VoicePortImpl

PortLocator

FP9500ProtocolHandler

FP2001ProtocolHandler

SylviaProtocolHandler

ISSAP55ProtocolHandler

VikingRC2AProtocolHandler

DialUpPort

Figure 10. FMSPackaging (Class Diagram)

R1B2 FMS High Level Design Rev.0 5-1 10/24/00

5 Deployment
This deployment shows the probable deployment of the FMS objects for R1B2. The actual
number and types of ports is not accurate on this diagram and is shown as an example of the
ability for a PortManager to manage ports of different types. ISDN modems have already been
deployed at remote sites for communications cost savings. POTS modems will also be deployed
at sites where they can benefit from a maximum cost savings (i.e., by LATA).

DMS

POTSModemPort

WAN

DMS

ISDNModemPortPortManager

ISDNModemPort

ISDNModemPortPortManager

ISDNModemPort
TBD

FMS Communications Server

DMS

Because POTS connections do not benefit
from the same cost savings as ISDN when
used at a remote server, a communications
server for POTS connections may be deployed
elsewhere on the WAN instead of widely
distributing POTS ports to remote servers.

PortManager

POTSModemPort

HANSOCFMS1
FMS Communications Server

HUT1213FMS1
FMS Communications Server

HUT0304FMS1
FMS Communications Server

CHART II Server

CHART II GUI

CHART II GUI

Other CHART II GUIs

Other FMS
Communications

Servers

DMS objects exist for each DMS in the CHART II System.
DMS objects can use any of the available communications
servers to fulfill communications needs.

This diagram shows only
nodes and objects relating
to field device communications.
Many other objects exist in
the CHART II system and are
not shown.

DMS

DMS

DMS

PortManager

ISDNModemPort

ISDNModemPort

POTSModemPort

The actual types and
number of ports served
on each communications
server depends on the
actual hardware configuration.
This diagram shows that
port types can be mixed on
a communications server.

LAN

Frame Relay

Frame Relay

LAN

WAN

WAN

Frame Relay

Figure 11. FMSDeployment (Deployment Diagram)

R1B2 FMS High Level Design Rev.0 BI-1 10/24/00

Bibliography
CHART II Business Area Architecture Report, document no. M361-BA-005R0, Computer
Sciences Corporation and P.B. Farradyne, Inc., April 28, 2000

CHART II System Requirements Specification Release 1 Build 2, document no. M361-RS-002R1,
Computer Sciences Corporation and P.B. Farradyne, Inc.
The Common Object Request Broker: Architecture and Specification, Revision 2.3.1, OMG
Document 99-10-07

Martin Fowler and Kendall Scott, UML Distilled, Addison-Wesley, 1997

TELE-SPOT 3001 Sign Controller Communications Protocol, document no. 750208-040 v2.3,
T-S Display Systems Inc., 1995

Functional Specification for FP9500ND – MDDOT Display Control System, document no.
A316111-080 Rev. A6, MARK IV Industries Ltd., 1998.

Maintenance Manual for the FP1001 Display Controller, document no. 316000-443 Rev. E,
Ferranti-Packard Displays, 1987

FP2001 Display Controller Application Guide, document no. A317875-012 Rev. 8, F-P
Electronics, 1991

Engineering Specification - Brick Sign Communications Protocol, Rev. 1, ADDCO Inc., 1999.

PCMS Protocol version 4, document number 32000-150 Rev. 5, Display Solutions, 2000

BSC Protocol Specification (Data Link Protocol Layer), v. 1.3, Fiberoptic Display Systems Inc.,
1996

Sylvia Variable Message Sign, Command Set 9403-1, v. 1.4, Fiberoptic Display Systems Inc.,
1996

2.5 Mile AM Travelers Information Station Instruction Manual For: Maryland State Highway
Administration, Information Station Specialists.
Technical Practice RC-2A Remote Touch-Tone On/Off Industrial Controller, Viking Electronics
Inc., August 1993.

R1B2 FMS High Level Design Rev.0 AC-1 10/24/00

Acronyms
The following acronyms appear throughout this document:

API Application Program Interface

CORBA Common Object Request Broker Architecture

DBMS Database Management System

DMS Dynamic Message Sign

DTMF Dual Tone Multiple Frequency

FMS Field Management Station

GUI Graphical User Interface

HAR Highway Advisory Radio

IDL Interface Definition Language

ITS Intelligent Transportation Systems

LATA Local Access and Transport Areas

NTCIP National Transportation Communications for ITS Protocol

OMG Object Management Group

ORB Object Request Broker

POTS Plain Old Telephone System

R1B2 Release 1, Build 2

UML Unified Modeling Language

R1B2 FMS High Level Design Rev.0 G-1 10/24/00

Glossary

Communications Server A PC outfitted with communications hardware and the FMS
Communications Service software.

DMS A Dynamic Message Sign that can be controlled by one
Operations Center at a time.

Graphical User Interface Part of a software application that provides a graphical interface
to its user.

HAR A Highway Advisory Radio which can be controlled by one
Operations Center at a time.

Operator A Chart II user that works at an Operations Center.

Port A software object used to model a physical communications
port.

Port Manager A software object that manages access to one or more
communications ports.

Protocol Handler A software object that contains code that encapsulates the
specific communications sequences required to command a field
device.

SHAZAM A device used to notify the traveling public of the broadcast of a
HAR message.

User A user is somebody who uses the CHART II system. A user can
perform different operations in the system depending upon the
roles they have been granted.

R1B2 FMS High Level Design Rev.0 A-1 10/24/00

Appendix A: CORBA Information

CORBA
CORBA is an architecture specified by the Object Management Group (OMG) for distributed
object oriented systems. The CORBA specification provides a language and platform
independent way for object oriented client/server applications to interact. The CORBA
specification includes an Object Request Broker (ORB) which is the middleware used to allow
client/server relationships between objects. Using a vendor’s implementation of an OMG ORB,
software applications can transparently interact with software objects anywhere on the network
without the application having to know the details of the network communications.

Interfaces to objects deployed in a CORBA system are specified using OMG Interface Definition
Language (IDL). Applications written in a variety of languages or deployed on a variety of
computing platforms can use the IDL to interact with the object, regardless of the language or
computing platform used to implement the object.

CORBA Services
The OMG CORBA specification includes specifications for application servers that provide
basic functionality that is commonly needed by distributed object systems. While there are
specifications for many such services, many services have not yet been implemented. Of the
CORBA Services that are available, the CORBA Event Service and CORBA Trading Service are
utilized in the CHART II system. A description of each of these services follows.

CORBA Event Service
The CORBA Event Service provides for a way to provide data updates within the system in a
loosely coupled fashion. This loose coupling allows applications with data to share to pass the
information via the event service without needing to have knowledge of others that are
consuming the data.

Data passed through the event service is done using event channels. Many different types of
events may be passed on a single event channel. Interested parties may become consumers on a
given event channel and receive all events passed on the channel.

The CHART II system makes use of multiple event channels to allow event consumers to be
more selective about the type of events they receive. Also, event channels of the same type may
exist in multiple regions, allowing the CHART II system to be expandable and multi-regional.
Event channels used in the CHART II system are published in the CORBA trading service to
allow others to select which events they wish to consume.

CORBA Trading Service
The CORBA Trading Service is an online database of objects that exist in a distributed object
system. Servers that have services to offer publish their objects in the trading service.

R1B2 FMS High Level Design Rev.0 A-2 10/24/00

Applications that wish to use the services provided by a server can query the Trading Service to
find objects based on their type or attributes.

CORBA Trading Services can be linked together into a federation. Queries done on single
Trading Service can be made to cascade to all linked Trading Services as well. This feature
allows Trading Services serving single regions to be linked together, providing seamless access
to all objects in the system.

The CHART II System utilizes the CORBA Trading Service to allow the GUI to discover
objects in the system with which it allows the user to interact. Using the linking capabilities of
the Trading Service, the CHART II system can be distributed to multiple districts with the GUI
still able to provide a unified view of the system to the users.

